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Background 
 
Digital contact-tracing is being developed in several countries to tackle the           
SARS-CoV-2 pandemic. Manual contact tracing is too slow to reach people before            
they transmit, whereas the scalability and speed of a digital approach, using            
proximity sensors of smartphone devices, is theoretically fast enough to stop the            
epidemic ​(Ferretti et al. 2020)​. 
 
The development of an app includes a technological component and an           
epidemiological component. The technical component needs to ensure that the          
proximity events are recorded with sufficient precision in different circumstances and           
that protection of personal health-related data is ensured throughout the process.           
NHSX, the European PEPP-PT project (​https://www.pepp-pt.org​), and the        
Norwegian FHI, are developing systems that are both functional and secure. Solving            
the technical aspect is necessary but not sufficient to secure its success. A functional              
contact tracing app that can successfully suppress the epidemic requires a           
transparent algorithm that is (1) epidemiologically sound, (2) has been assessed by            
simulation with extensive sensitivity analysis, and (3) can be audited and optimised            
as data from the app becomes available and the epidemic evolves. 
 
The overarching objective of this report is to present simulations that will support the              
deployment and optimisation of digital contact tracing within an established          
programme of epidemic mitigation and control, and specifically to explore the           
conditions for success as countries prepare for exit from lockdowns. A lockdown can             
be regarded as a quarantine applied broadly to most of the population, excluding             
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only key workers for example, whereas digital contact tracing can limit quarantine            
requests to those most at risk of transmitting the virus. 
 
A measure of success for digital contact tracing is the extent to which it reduces               
onwards transmission of the virus whilst simultaneously minimising the number of           
people in quarantine. 
 
The primary aim of this study is to compare the impact of different app configurations               
on epidemic dynamics given a plausible set of assumptions on user uptake and the              
technological limits of the system. The effectiveness is furthermore dependent on           
key epidemiological parameters like the generation time, R​0​, and the percentage of            
asymptomatic and mildly symptomatic cases. We present sensitivity analyses, such          
that the effect of the intervention can be seen in a collection of simulated epidemics               
with a range of plausible patterns. 
 
The secondary aim is to estimate the broader societal consequences of pursuing the             
intervention, in terms of numbers of people quarantined, and in particular the number             
of uninfected people being asked to quarantine. Half of COVID-19 infections are            
transmitted before the onset of symptoms ​(Ma et al. 2020; Ganyani et al. 2020; Ferretti               
et al. 2020)​, which is sufficient to cause a growing epidemic (i.e. even perfect isolation               
of all symptomatic individuals would be insufficient to stop the epidemic). Successful            
epidemic control of COVID-19 in a non-immune population must therefore involve           
isolation of some non-symptomatic infected individuals. Since these individuals         
cannot be distinguished from uninfected individuals at the early stages of disease, it             
is inevitable that some uninfected people will have to be quarantined to achieve             
epidemic control. This can be achieved by mass quarantine or lockdowns; however,            
lockdowns are entirely non-specific and cause major disruption to society and the            
economy. As an alternative, a contact tracing app can target timely quarantine            
advice to infected people, though not with perfect specificity or sensitivity. In this             
report we present strategies that minimize numbers of quarantined individuals while           
maintaining sustainable epidemic control after lockdown restrictions are lifted.  
 
Instant identification of cases by self-reporting of symptoms is likely to be highly             
effective at tracing their contacts, including pre-symptomatic contacts, before they          
transmit. Substantial reductions in the proportion of uninfected people in quarantine           
can be achieved by rapid follow-up testing of index cases, which could release whole              
clusters of contacts. We explore different mechanisms of quarantine and release that            
could further reduce total numbers of individuals in quarantine, independent of           
testing. We use recent data from OFCOM on age-specific smartphone use, with            
overall use of 70% of the population. People aged over 70 have low smartphone use               
and are highly vulnerable to COVID-19, so we recommend continued shielding of            
this age group (partial lockdown). We assume no app use in children aged under 10.               
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With these assumptions, we find that the epidemic can be suppressed with            
80% of all smartphone users using the app, or 56% of the population overall.  
 
We end by discussing limitations of the algorithm as it is currently proposed and              
suggest a strategy for further optimization, using data acquired by the app after it is               
released. We also discuss the role that community rapid testing would have in             
improving the policy, resulting in fewer quarantined people than relying on           
self-diagnosis.  
 

Methods 
 
An individual-based network model of social interactions.  
 
Contact tracing is difficult to model accurately in a simple mathematical model,            
because a history of previous contact events must be recalled. Therefore an            
individual-based model (IBM) offers the most parsimonious method for accurately          
capturing the effects of this intervention. Other non-pharmaceutical interventions can          
be modelled simultaneously in the same framework. 
 
We simulated an urban population of 1 million individuals, chosen to represent a             
plausible catchment area of a single NHS trust. The demographic structure of the             
simulated population was based upon UK-wide census data, and the structure and            
sizes of households were matched to data from the ​Understanding Society ​survey;            
for example, older people tend to live together and young children tend to live with               
younger adults. On a daily basis all individuals in the model move between ​small              
world networks ​representing households and a second network representing either          
work places, schools, or regular social environments for older people. Individuals           
also enter random networks representing public transport,transient social gatherings         
etc. Membership to each type of network is determined by age, giving rise to              
assortative mixing patterns. Network parameters are chosen such that the average           
number of interactions match age-stratified data reported in ​(Mossong et al. 2008)​.            
The actual number of daily interactions within random networks is drawn from a             
negative binomial distribution, which allows for rare super-spreading events. 
 
The interaction networks play two roles in the IBM. The first is that inside each               
network, individuals can transmit the infection to each other on each day that a              
connection is made. Secondly, to model digital contact tracing, the past network of             
an infected individual is recalled and used to quarantine their contacts. The            
proportion of the network visible to, and informing, the intervention is set by             
parameters controlling coverage of the app in the population, self-diagnosis by           
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users, compliance with the advice, drop-out rates, and the sensitivity of the            
technology in detecting transmission events. 
 
Modelling SARS-CoV-2 transmission, disease progression and epidemiology 
 
COVID-19 infections were seeded into the modelled population and permitted to           
spread via the interaction network. The probability of transmission is determined by            
the stage of infection, the network in which exposure occurred (home interactions            
are assumed to be twice as likely to result in a transmission compared to workplace               
and random network interactions), the infectiousness of the transmitter, and the           
susceptibility of the recipient. Susceptibility is modelled as a function of age, as is the               
severity of infection (see Parameter Sheet). The increase in infectiousness as a            
function of severity is also modelled. Individuals progress through stages of being            
susceptible, infected, and recovered (immune) or deceased, as depicted in          
supplementary figure 1.  
 
Individuals develop symptoms after a mean of 6 days (standard deviation 2.5 days)             
(Backer, Klinkenberg, and Wallinga 2020; Lauer et al. 2020)​. An individual’s           
infectiousness varies over the time course of their infection following a gamma            
distribution with mean 6 days ​(Ferretti et al. 2020; Ma et al. 2020; Ganyani et al.                
2020)​. We assume 18% of individuals in all age groups remain asymptomatic (i.e.             
never develop symptoms) ​(Mizumoto et al. 2020)​, and the remainder are divided into             
severe and non-severe categories with differing proportions by age (Parameter          
sheet). Disease severity correlates with infectiousness ​(Verity et al. 2020; Lu et al.             
2020; Luo et al. 2020)​, and rates of severe infection also vary by age ​(Souza et al.                 
2020; Yang et al. 2020)​. ​Compared to individuals with relatively severe symptoms,            
mildly symptomatic individuals are taken to be 0.48 times as infectious, and            
asymptomatic individuals 0.29 times as infectious ​(Luo et al. 2020)​. ​Probabilities of            
hospitalisation, demand for critical care, rates of recovery and progression to death            
are all age dependent. Hospitalised patients are removed from the interaction           
network. We do not currently model hospital interactions; nosocomial transmission          
and specific considerations for hospital workers are the subject of ongoing work.  
 
Without intervention, COVID-19 transmission was assumed to have a generation          
time with mean 6 days and an epidemic doubling time of 3 to 3.5 days resulting in an                  
R​0 of 3.4 and 3, respectively. Relationships between a broader range of these core              
epidemiological assumptions and the outcome of the interventions under study were           
explored in sensitivity analyses. 
 
Modelling the interventions 
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Non-targeted interventions, including physical distancing and generalised lockdowns,        
were modelled along with digital contact tracing. As a baseline assumption in all             
interventions, 80% of symptomatic individuals self-quarantine together with their         
household members, irrespective of whether an individual has the app. ​Individuals           
over 70 years old continue their quarantine after lockdown (shield group).           
Symptomatic individuals quarantine for 7 days; asymptomatic household members         
and traced individuals quarantine for 14 days. Non-compliance with quarantine was           
modelled by assuming that 2% of individuals drop out of quarantine each day.             
COVID-19 disease is confirmed in hospital by testing hospitalised cases; there is no             
testing in the community. 
 
The model assumes that the population entered a 35-day lockdown when 2% of the              
population became infected. During lockdown, workplace and random contacts are          
reduced to 20% and household contacts increase to 150% of the previous values.  
 
The app starts contact tracing at the end of lockdown, but has already collected a               
7-day memory of contacts at this point. All contacts in the model are potentially              
infectious contacts, in line with the assumptions being made in the app development             
that only longer and closer contacts will result in notification, which is biologically             
plausible.  
 
We assume that only 80% of modelled contacts are registered by the app, either for               
technical reasons, or due to some contacts involving people not carrying their            
phones.  
 
If a user self-diagnoses, contacts of the past 7 days are taken into account when               
calculating the probability that the contact resulted in a transmission. All individuals            
were assumed to self-isolate after receiving a notification (workplace and random           
network contacts drop to zero), with a drop-out rate of 2% per day.  
 
We assume that each day, 0.05%, 0.2% or 0.5% of app users declare symptoms for               
reasons unrelated to COVID-19. This models the combined effect of non-COVID-19           
infections (eg. daily probability of non-COVID-19 similar symptoms including         
influenza: 0.002%, ​(Influenza Surveillance Team, PHE 2019) ​and false declaration of           
symptoms for malicious and non-malicious reasons. 
 
The IBM code is open source, and can be accessed on GitHub alongside a Jupyter               
notebook (Python-based user interface) for running the model and visualising          
outputs. 
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Results 
 
The aim of this report is to model the development of the epidemic under a number                
of different scenarios involving a contact tracing app being used for targeted            
quarantine. 
 
For different interventions we report the following outcomes: 

● daily incidence 
● cumulative incidence 
● daily hospitalizations 
● number of people in hospital each day 
● daily ICU admissions 
● number of people in ICU each day 
● daily deaths 
● number of people in quarantine each day 
● number of tests required each day 

 
The baseline assumptions can be found in the Method section and the appendix.             
Briefly, a 35-day lockdown is initiated when 1% of the population are infected.             
Individuals over 70 are asked to self-isolate throughout in accordance with UK policy             
on ‘shielding’, which provides additional protection to this vulnerable group who are            
less likely to use smartphones (OFCOM data). The app begins collecting data 7 days              
before the end of lockdown, and begins contact tracing when lockdown ends. When             
a user self-diagnoses, contacts of the past 7 days are taken into account when              
calculating the probability that the contact resulted in a transmission. 100% of            
individuals were assumed to self-isolate after receiving a notification, with a drop-out            
rate of 2% per day. We assume that 80% of smartphone users (56% of the               
population) use the app, and vary this assumption widely in the sensitivity analyses             
in the supplement. 
 
We consider the following scenarios (Figure 1): 
 

● Scenario 1:  
○ No app 

 
● Scenario 2:  

○ App without recursion 
○ Quarantine: index cases, their households, their contacts 
○ Release: everybody after 14 days from notification 

 
● Scenario 3:  

○ App with recursion  
○ Quarantine: as scenario 2 plus household members of contacts 

 



 

○ Release: as scenario 2 
 

● Scenario 4:  
○ App with recursion and cluster release 
○ Quarantine: as scenario 3 
○ Release: as scenario 2&3 plus release of an index case cluster if            

nobody from the cluster develops symptoms within 5 days 
 

● Scenario 5:  
○ App with recursion and testing as follow-up 
○ Quarantine: as scenario 3&4 
○ Release: as scenario 2&3 plus release of an index case cluster if index             

case had a negative test 
 

● Scenario 6:  
○ App with recursion and notification upon testing 
○ Quarantine: contacts are notified only after index case tests positive 
○ Release: as scenario 2&3 

  

 



 

Figure 1​: App Configurations 
 

 
 

 



 

Figure 2 - smartphone use by age (OFCOM), and a scenario with 80% uptake of the                
app amongst users, corresponding to 56% of the population. OFCOM data may            
under-estimate smartphone use (NHSX data).  

 
Recent epidemiological analyses suggest that growth rates of SARS-CoV-2 may be           
higher than initially suspected. We explored the effects of lockdown and app-based            
interventions under three conditions representing slow, medium and fast epidemic          
growth. Simulations were calibrated on recent studies of SARS-CoV-2 transmission          
that report generation times in the range of 5-7 days ​(Ferretti et al. 2020; Ma et al.                 
2020; Ganyani et al. 2020)​. We also present all simulations for a doubling time of 3                
days, resulting in an R​0 of 3.4, and a doubling time of 3.5 days, resulting in an R​0 of                   
3.0. In addition, we varied rates of asymptomatic infection (18%-40%), considered a            
range of non-COVID-19 self-diagnoses, and explored lower susceptibilities in         
children (ten times less susceptible than adults). Numbers on the y axis are scaled to               
a population of 65 million. 
 
Compared to release from lockdown with only self-isolation of symptomatic          
individuals (Scenario 1), all configurations of the app result in a substantial reduction             
of new cases (Figure 3 & 4), hospitalizations (Supplementary Figure 2) and ICU             
admissions (Supplementary Figure 3) and in a substantial number of lives saved            
(Supplementary Figure 4). Direct contact tracing with the app (Scenario 2) maintains            
epidemic suppression only under optimistic assumptions of epidemic growth         
(doubling times of 3.5 days, generation time of 5 days). Allowing recursive contact             
tracing to household members of first-order contacts controls the epidemic under           
even the most pessimistic assumptions of epidemic growth (Scenario 3). However, it            
also quarantines the largest number of uninfected people (Figure 4), with only a 50%              
reduction in numbers of people quarantined compared to lockdown, assuming 0.2%           
of individuals initiate tracing daily for reasons unrelated to COVID-19.  
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Figure 3:​ Daily incidence.  

 

 
 
To reduce numbers of quarantined people without causing substantially more          
infections we introduced a heuristic to the algorithm that released quarantined           
individuals if no contacts of the index developed symptoms after 5 days (Scenario 4).              
In practice, the effectiveness and safety of this approach would need to be improved              

 



 

by introducing a statistical model to calculate probabilities of clusters having           
COVID-19, given knowledge of individual infectious risk and of the true background            
rate of non-COVID-19 symptom reporting in the general populations (see          
optimisation section below). However, even this simple heuristic reduces the total           
number of people in quarantine by up to 10 million (of the total UK population). 
  
Figure 4​: Total number of people infected. 

 

 

 



 

 
Integrating the app with community testing of index cases has the greatest impact on              
numbers of people in quarantine (Scenario 5). In this scenario, index cases still             
trigger contact tracing by self-reporting symptoms, but are then followed up with            
virological testing which, if negative, releases them and their quarantined contacts.           
High numbers of tests are needed to achieve this (supplementary Figure 5), but the              
simulation highlights the potential for community testing to release significant          
numbers of people. In ongoing work we are exploring score-based prioritisation of            
testing (e.g. to clusters that involve many individuals). Improving presumptive          
diagnoses could also improve the specificity of quarantining and will be the subject of              
future work. 
 
In the last scenario, we explore contact tracing upon positive test only, as currently              
planned by many countries in continental Europe. Quarantining contacts only after           
the index case has been confirmed positive avoids the peak of quarantine right after              
lockdown, but even assuming an extremely fast turn-around time for the test (24             
hours from self-diagnosis to result), the delay results in more transmission from            
contacts in the presymptomatic phase and an overall higher number of cases and             
deaths compared to the scenario in which testing the index case is used to release               
contacts from quarantine. 
 
Next we studied the dependence upon variable uptake of the app. We assume             
current levels of smartphone use, age stratified (69.5% overall, OFCOM, very low in             
under 10s and over 70s), and that the app is installed on a fraction of phones                
ranging from 0 to 1, in increments of 0.05. We find that the epidemic can be                
suppressed with 80% of all smartphone users using the app, or 56% of the              
population overall (Figure 5). 
 
We estimated the cumulative deaths after 140 days under each scenario, assuming            
0.75% infection fatality ratio, and only interventions after lockdown being app use            
with high adherence to notifications amongst users and continued shielding of over            
70s (constant across all values of x-axis). The roughly linear dependence of the             
outcome on app usage reflects the combined effect of two non-linear effects acting in              
opposing directions, namely the quadratic dependence of proportion of contacts          
detected on app usage, and the well known non-linear dependence of epidemic size             
on R​0​. (Figure 6) 
 
Lower rates of app coverage delayed the time to a second lock-down, assuming that              
this would start at 1% prevalence of the total population (Figure 7) 
 
  

 



 

Figure 4 -Individuals in quarantine. The lock symbol refers to people quarantined            
during lockdown, whereas the shield symbol refers to the continuing shielding of over             
70s after the end of the lockdown.  
 

 

 
 

 



 

Figure 5 - daily and cumulative incidence depending on varying use of the app 
Doubling time 3 days: 

 

 
 
 
 

 



 

Figure 6 - Cumulative deaths after 140 days  
 

 
Figure 7 - Continued transmission after ending first lockdown without other           
successful interventions would likely result in a second lockdown. For sake of            
argument, we assume that a second lockdown would be triggered when a 1%             
prevalence threshold is reached. With this trigger, the time to a second lockdown is              
shown as a function of each scenario and app usage. The cross symbol indicates              
that the criteria for second lockdown is not reached during the simulated time-period.  
 

 

 
A plan for optimisation 
 
Optimal functionality of the app depends on answering two questions: who should be             
quarantined, and when should they be released from quarantine. Our ongoing work            
aims to make improvements in both areas and the supplementary document           
(Tracing Algorithm) proposes pseudocode for its implementation. 
 
Risk scoring 
 
In order to optimise the configuration of digital contact tracing, we define an objective              
function based on a single metric: an individual infection risk score calculated from             
information acquired by the app. The closer the correlation between the risk score             

 



 

calculated from phone proximity data and the true risk of transmission, the more             
precise contact tracing can be applied.  
 
The infection risk score has two components: exposure risk and transmission risk.            
The exposure risk between a source and a potential recipient is defined as the sum               
of all proximity events, each individually scored using an integral function of distance             
and contact duration, and multiplied by the risk that an exposure results in an              
infection. The latter depends on the infectiousness of the transmitter, which is            
principally determined by their stage of infection at the time of contact. Other factors              
contributing to the transmission score include (i) whether the contact occurred           
between household members, (ii) the presence and severity of symptoms, and (iii)            
the age of the source. 
 
Incorporation of the infection risk score with a digital contact tracing app would             
proceed as follows: users of the app collect proximity event information, detected as             
low-energy bluetooth signatures, on their devices. Upon diagnosis with COVID-19 an           
individual's proximity events are uploaded to a central server. Each proximity event is             
converted to an infection risk score based on bluetooth signal strength (used to             
estimate distance), duration of contact, and an estimate of the individual’s           
infectiousness, which we calculate from the interval between the onset of their            
symptoms and time of contact. All infectious risk scores are summed for each             
contact person, and contacted persons with total scores exceeding a given threshold            
receive notification recommending isolation. 
 
Recursive contact tracing of individuals, to include contacts of contacts, can be            
decided based on the infection risk score. For example, an index-case, person A,             
deemed to be infectious at the time of contact with person B, could trigger immediate               
recursive tracing to person B’s contact, to include person C; it would be reasonable              
to trace and isolate person C immediately if they had prolonged contact with patient              
B in their infectious phase.  
 
Risk scoring can be used to increase the safety of the app by controlling the mean                
number of quarantine notifications initiated from a single index case. Setting           
thresholds on a population mean still allows for rare outlying events (e.g.            
superspreading events). Conversely, placing a hard threshold on distance or on type            
of contact could potentially create uncontrolled behaviours. Risk scoring reduces this           
problem but still allows the number of contacts to vary greatly between different             
users. We propose that the most epidemiologically reasonable and predictable          
approach to providing notifications is to start from the ranking of all contacts of all               
cases, and to place a cut-off such that the mean number of notifications per person               
is known.  
 

 



 

Once the app has been running for some weeks, the risk scoring method can be               
improved by analysing data acquired by the app, such as follow-up clinical data and              
test results of traced individuals. This would optimize performance of the app, and             
improve epidemiological understanding and general public health advice. For         
example, it would be possible to test the relative importance of very long contacts,              
such as may be experienced at home, compared to shorter contacts; it would be              
possible to test the distance-dependence of contacts, or compare inside/outside          
contacts. Machine learning approaches could also be used to improve predictions.           
The better the predictions of what constitutes a high-risk contact, the better the             
accuracy with which notifications to quarantine can be targeted. 
 
Smart release from quarantine using network information 
 
Another area that can improve as the app is used is the speed of release of clusters                 
of quarantined individuals. This can be done very effectively by testing the index             
case, as shown in the results above (scenario 5), but this requires approximately             
100,000 tests per day for this purpose for the UK. In the absence of a sufficiently                
large capacity for community testing, we are exploring options to release a cluster             
originating from an index case after a given period if none (or a low percentage               
consistent with background rates of false reporting and non-COVID-19 symptom          
reporting) of the individuals in the cluster has experienced symptoms in this period,             
indicating that the index case was likely to be uninfected when the cascade was              
triggered. If a moderate capacity for community testing is available, the contact            
information can also be used to assess which index cases should be tested with              
priority in order to safely release the highest number of individuals from quarantine. 

 
Discussion 
 
This report demonstrates that digital contact tracing has the potential to make a             
substantial impact in suppressing the SARS-CoV-2 epidemic. Even under         
pessimistic assumptions of very rapid rates of epidemic growth, high rates of uptake             
of the app could contribute to epidemic containment, and release the majority of             
individuals from quarantine at the end of the current lockdown. Low rates of app use               
will result in resurgence of the epidemic and the need for further lockdown. With low               
rates of uptake, digital contact tracing at least delays the interval between lockdowns             
(ongoing simulations). 
 
Compared to previous reports, we have adjusted our modelling to account for age             
differences in infection rate and age differences in smartphone use, and to account             
for faster doubling times in Europe (higher R​0​). In order to maintain low mortality with               
use of app-based digital contact tracing, we recommend continued lockdown          

 



 

(shielding) of people aged over 70 - a group with assortative mixing, low             
smartphone use (approximately one quarter), and high COVID-19 mortality. We also           
assume no use of the app in children aged under 10. With these assumptions, we               
find that the epidemic can be suppressed with 80% of all smartphone users using the               
app, or 56% of the population overall.  
 
Our individual-based model can be easily reparameterised to evaluate alternative          
configurations of the app and combinations of non-pharmaceutical interventions, and          
physical distancing assumptions, under different epidemic scenarios. The model can          
also be parameterised for use in other countries, using country-specific data on            
household composition and contact frequencies. 
 
We previously demonstrated that rapid contact tracing was essential in reaching          
individuals before they transmit: delaying contact tracing by even half a day from             
onset of symptoms can make the difference between epidemic control and           
resurgence.  
 
Testing improves specificity over presumptive self-diagnoses, but sensitivity is low in           
early pre-symptomatic infection. Furthermore, prolonged test turnaround times and         
low capacity for testing limit its current use for quarantining individuals. However if             
testing can be scaled up and sped up, it could be a valuable addition to the digital                 
contact tracing process, especially as the number of new infections is reduced.  
 
Testing index cases after they self-report can also be used to ensure the quick              
release of false positive clusters: if the index case tests negative, all their contacts              
can be released shortly after they start quarantine. Starting the contact tracing only             
after a positive test is less effective at suppressing the epidemic, as crucial time is               
lost in which contacts are already infectious.  
 
This report provides options for a starting configuration of a contact tracing app. The              
algorithm behind the app can be adjusted to reflect policy changes, e.g. the             
introduction of more wide-spread testing. It is to be expected that the optimal solution              
will likely involve a number of successive scenarios to reflect an early need to              
capture as many infections as possible and a later need to avoid quarantining of too               
many people as the epidemic declines and reintroductions are monitored. 
 
The accuracy with which bluetooth low-energy signatures can be converted to useful            
proxies of transmission risk is currently uncertain. By following up subsets of            
quarantined clusters with testing, the parameters, algorithms and functions that          
define individual infection risk can be rapidly refined, improving both the sensitivity of            
the platform (more infected people in quarantine - faster epidemic control), and            

 



 

specificity (fewer uninfected people in quarantine - a stronger economy and faster            
return to normal society). 
 
Under current PHE guidance, manual contact tracing requires cases to list close            
contacts over the past 7 days that were within 2 metres and lasting 15 minutes or                
more. In practice this serves as an ​aide memoire ​rather than a strict guide, and               
implementation within the app could lead ​to unexpected consequences, and could           
miss transmissions resulting from frequent shorter contacts that do not meet the            
definition individually. In a previous report, and as part of ongoing work, we suggest              
that duration of contact, proximity of contact, number of contacts, time of contact in              
relation to symptom onset, location of contact (household vs non-household),          
age-band of sources and recipient, and severity of symptoms in index cases, should             
all be considered in determining the individual infection risk. Basing all quarantining            
and contact-tracing decisions on individual risk, once the app has acquired sufficient            
data to understand and test the relevance of this risk, is likely to result in better                
performance of the app. 
 
A key limitation of this report and the current version of our model is a lack of                 
consideration of hospitals and health care workers. Nosocomial transmission in          
hospitals is likely to continue even throughout lockdowns, and this could continually            
seed infections into the population. Healthcare workers come into contact with           
infected individuals on a daily basis and would not be able to use the app without                
special configuration. In-depth modelling of hospital transmission and interactions         
with the wider community is the subject of ongoing work.  
 
Another major limitation of our study is that, with the exception of the shielding of               
over 70s, we consider app-based contact tracing in the context of social mixing that              
is identical to the pre-lockdown period. It is plausible relaxation of a lockdown may              
result in some continued social distancing, in which case the scenarios here could be              
pessimistic about epidemic resurgence.  
 
There are no plans currently to record location data. Location data could inform             
epidemiological risk scoring for cases of environmental contamination. It is not           
currently known to what extent this is important, though our working model is that              
this accounts for <10% of transmissions (Ferretti et al).  
 
We do not address the ethical arguments for and against digital contact tracing in              
this document. We set out the requirements for ethical implementation previously           
(Ferretti et al) and have further developed this discussion here:  
https://github.com/BDI-pathogens/covid-19_instant_tracing/blob/master/The%20ethic
s%20of%20instantaneous%20contract%20tracing%20using%20mobile%20phone%
20apps%20in%20the%20control%20of%20pandemics.pdf  

 

https://github.com/BDI-pathogens/covid-19_instant_tracing/blob/master/The%20ethics%20of%20instantaneous%20contract%20tracing%20using%20mobile%20phone%20apps%20in%20the%20control%20of%20pandemics.pdf
https://github.com/BDI-pathogens/covid-19_instant_tracing/blob/master/The%20ethics%20of%20instantaneous%20contract%20tracing%20using%20mobile%20phone%20apps%20in%20the%20control%20of%20pandemics.pdf
https://github.com/BDI-pathogens/covid-19_instant_tracing/blob/master/The%20ethics%20of%20instantaneous%20contract%20tracing%20using%20mobile%20phone%20apps%20in%20the%20control%20of%20pandemics.pdf


 

 
An app is a tool for anonymously and instantaneously communicating information           
from index cases to their past contacts. The effectiveness of the policy in controlling              
the epidemic is dependent on people’s response to the messages; the app alone             
should not be seen as an intervention independent of widespread public health            
activities focused on appropriate use and response, and will require trust in the             
system.  
 
In contributing to epidemic control, app-based contact tracing should not be           
considered separate from other public health interventions such as testing, physical           
distancing and appropriate PPE. Conventional contact tracing may be used to           
validate the approach, and to enhance it. And of course, the fewer infected cases              
there are, the more resources can be spent preventing transmission from each of             
them.  
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Supplementary Figure 1​: The disease status of an individual and the probability            
and time distribution of transitions. φ​state​(age) variables are age-dependent         
probabilities of transition to a particular state when there is a choice. τ​state variables              
denote the time taken to make the transition to different states. 
 
 

 



 

Supplementary Figure 2A:​ Daily hospital admissions.  
 

 
 

 
 
 
 

 



 

 
 
 
 
  

 



 

Supplementary Figure 2B: ​Individuals in hospital 
 

 

  

 



 

 
Supplementary Figure 3A:​ ICU admissions. 

 
 

 
 
 

 



 

Supplementary Figure 3B:​ People in ICU 
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Supplementary Figure 4​: Daily deaths.  
 

  
 

 
 
 

 



 

Supplementary Figure 5​: daily number of tests needed. Doubling time of 3 days. 
 

 

 

 


